Inquiry and Engagement in an interactive classroom

Annalisa Crannell Franklin & Marshall College

2018

Warning!

In this talk, I have included three short activities for you and people around you.

First of three activities: Ice breaker.

Introduce yourself to someone sitting near you. Include

• your name,

 \star your institution & department , and

the last object you put into a trash can.

(30 seconds)

In 2017, my family (with 3–6 people at home) put 10 trashcans at the curb.

Second of three activities:

* Turn back to that someone sitting near you.

Suggest two-three ways

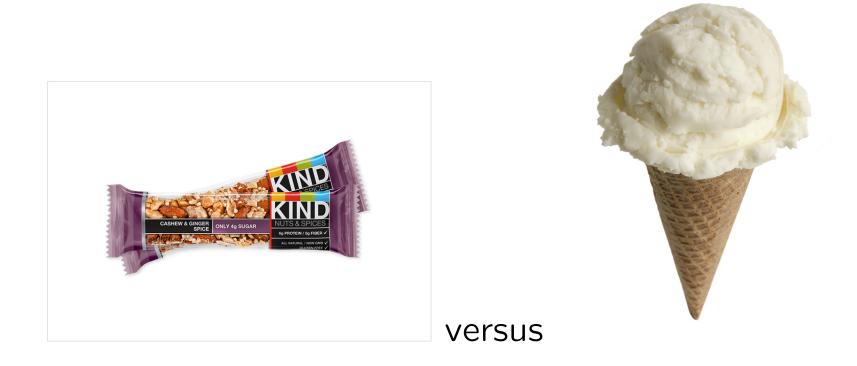
you might have avoided that last piece of trash.

(That is, avoided adding to a landfill).

(1 minute)

(Time's up.) Thank you again!!!

Your responses probably fell into one of these six categories:


- 1. R_f_s_ the trash in the first place
- 2. R_pl_c_ with a trash-free alternative
- 3. R___s_ durable objects vs. disposable objects
- 4. R_d_c_ the amount of things you use
- 5. R_c_cl_ instead of tossing in the landfill bin
- 6. R_t organic items

credit: The Zero Waste Home

1. R_f_s_: Avoid the trash in the first place

2. R_pl_c_: Change to a trash-free alternative

3. R___s_ durable objects, such as water bottles, bags, spoons, cloth napkins, 'xeryp' containers, etc.

4. R_d_c_ the amount of things you use

5. R_c_cl_ instead of tossing in the landfill bin

6. R_t organic items

6. R_t organic items

As my daughter once told her friends,

"My mom has a PhD and a compost pile!"

credit: The Zero Waste Home

Bea Johnson's 2015 trash

So ...

... what does "talking trash" tell us about teaching math?

Talking to strangers is uncomfortable for a lot of people.

Talking to friends makes it easy to get off-track.

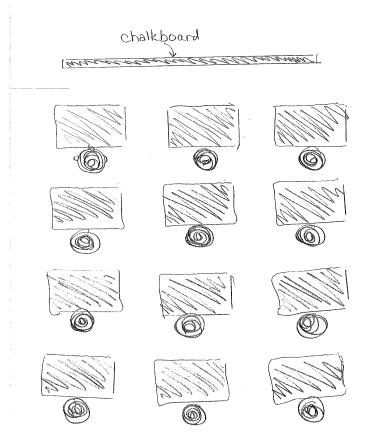
The room set-up is bad for effective conversation & follow-up.

We come to a talk (or a class) to hear from an "expert", not from the random person sitting next to us.

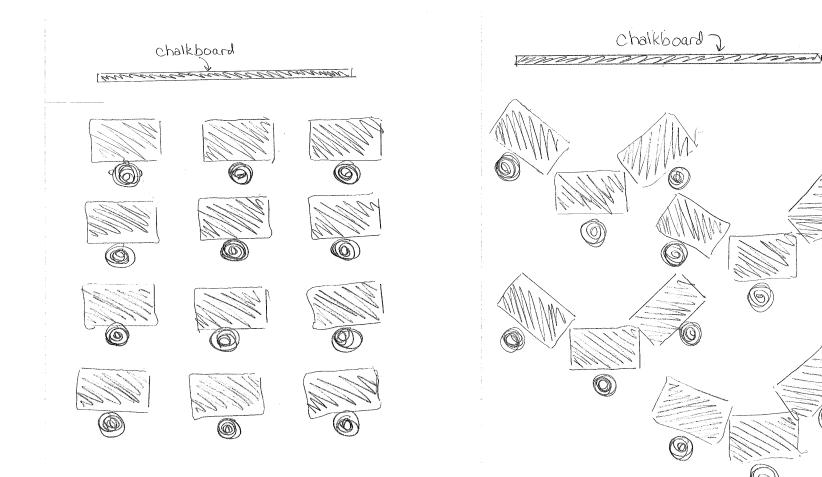
Talking to strangers is uncomfortable for a lot of people.

Talking to friends makes it easy to get off-track.

Talking to strangers is uncomfortable for a lot of people.


Talking to friends makes it easy to get off-track.

So make the rules specific and explicit:


timing, roles, and scope of discussion.

The room set-up is bad for effective conversation & follow-up.

The room set-up is bad for effective conversation & follow-up.

The room set-up is bad for effective conversation & follow-up.

We come to a talk (or a class) to hear from an "expert", not from the random person sitting next to us. We come to a talk (or a class) to hear from an "expert", not from the random person sitting next to us.

Answer 1, for the instructor:

So carefully craft questions that people can solve themselves, with some difficulty, together.

We come to a talk (or a class) to hear from an "expert", not from the random person sitting next to us.

Answer 2, for the student:

But what we want, and what help us learn best, are two different things.

What helps us learn best? Interactive Engagement

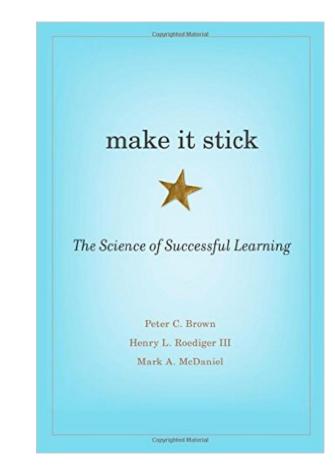
What helps us learn best? Interactive engagement has three components for students:

1. struggle with the problem themselves;

2. talk to other students about their approaches; and then

3. get immediate feedback.

see Epstein, AMS Notices (2013).


Interactive Engagement includes good, reasonable struggle.

We prefer the solutions we come up with ourselves, not the ones other people give us. So introduce "desirable difficulties":

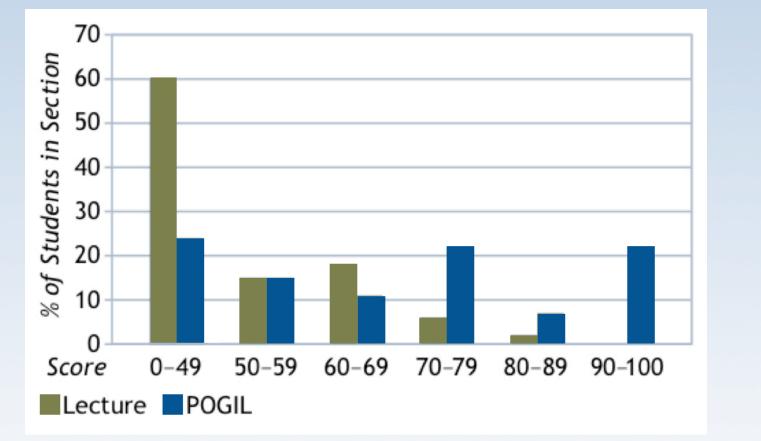
> 1. R_f_s the trash in the first place. VS.

1. Refuse the trash in the first place.

It is better to guess a wrong answer (and get feedback) than to make no attempt. When learners commit errors and are given feedback, the errors are not learned.

Brown, Roediger, and McDaniel (2014)

What does it mean to say *Interactive Engagement* "works better"?

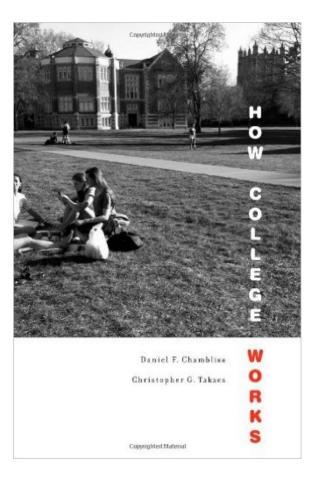

Next page: Organic Chem II student grades on a "review" test covering Organic Chem I material.

Gray/green bars: lecture,

Blue bars: Inquiry/discovery method

Organic Chemistry 2 Pre-Quiz at a Large Public University

Organic 2 Pre-quiz Results (Lecture vs. POGIL Organic 1)



Ruder, S.M., & Hunnicutt, S.S. (2008). POGIL in Chemistry Courses at a Large Urban University: A Case Study. In R.S. Moog, & J.N. Spencer (Eds.), *Process-Oriented Guided Inquiry Learning: ACS Symposium Series 994* (pp. 133–147). Washington, D.C.: American Chemical Society.

POGIL

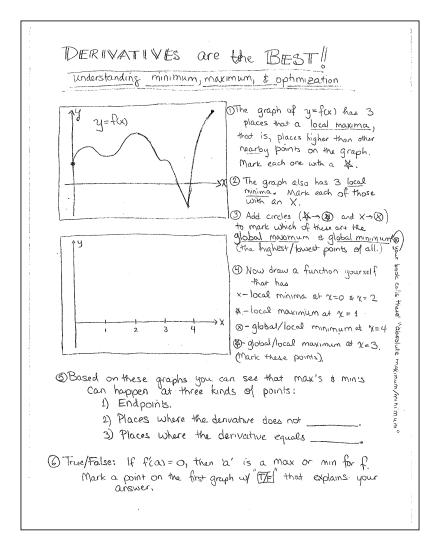
Copyright © 2015 The POGIL Project

"College works when it provides a thick environment of constant feedback, driven by the establishment and maintenance of social relationships."

Chambliss and Takacs, 2014.

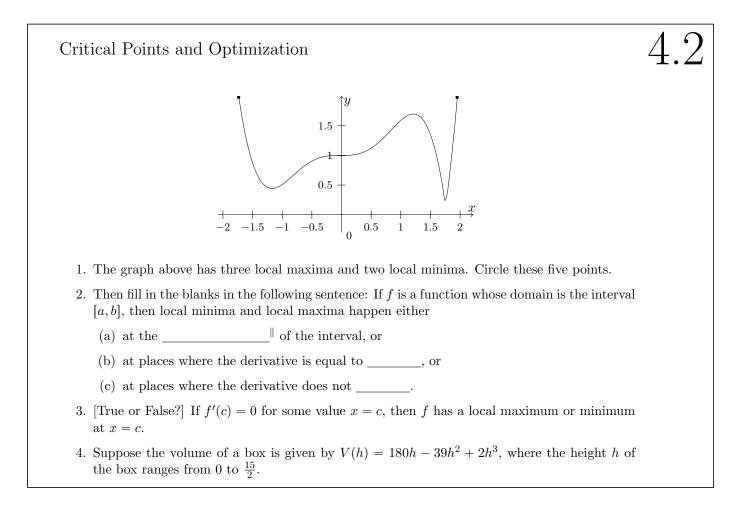
My first (accidental) IBL class:

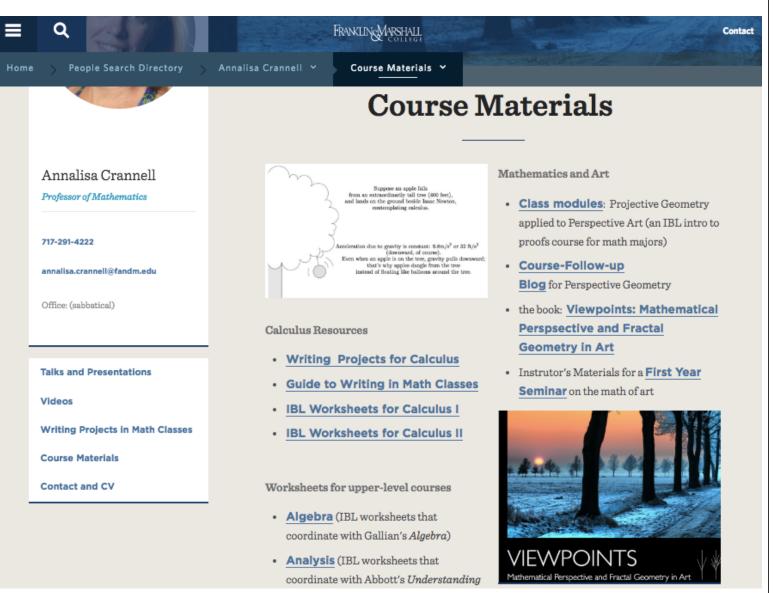
I was jealous of the Geology Department, so I took my students to a coffee house.



My first worksheets were masterpieces in pencil.

SQUARE ONE COFFEE HOUSE APRIL 2, 2002 INVESTIGATING COSETS & NORMAL SUBGROUPS PAGE 2 E i EXAMPLE 1 (1) If is isomorphic to a group we already know and love. What is that group? PULL OUT YOUR HANDY-DANDY CAYLEY TABLE FOR Dz. WE WILL INVESTIGATE LEFT & RIGHT COSETS OF 2 SUBGROUPS: $R = \{0, 1, -1\}$ and $f = \{0, V\}$ (5) Define a function ϕ which serves as an isomorphism from F to that other group, aR Ra a4 Ja. а. щO $\phi(\frac{1}{x}) =$ _____ 1481 -1 N A PNN G Explain why φ is 1-to-1. R is a normal subgroup; I is not. What do you think the definition of a normal subgroup is? (Explain why \$ is onto. EXAMPLE 2 U_{18} , like D_3 , has subgroups of order 3 and 2. ⑧ Explain why \$\u03c6\$ preserves group operation. $\mathcal{U}_{12} = 1$ H = { } is the slubgroup of order 3 2 = 13 is a subgroup of order 2. List all cosets of H in U.s. List all cosets of J in Zire! Is H a normal subgroup of U18? ANNOUNCEMENTS Is J a normal subgroup of U18? Come to Job Candidate talks: Friday, Monday, Wednesday / There is no homework due Tuesday March 19. There's & Math Club Meeting Wednesday the 20th at 7:30, Stager 212.


I started using occasional worksheets in calculus classes, too.


And then Max came along ...

Now I have lots of LATEX-ed worksheets . . .

... that I've posted on my web pages, for the curious

Even more worksheets for IBL math classes:

Journal of Inquiry-Based Learning in Mathematics

Contents

Senior Editors

 Managing Editor: W. Ted Mahavier Department of Mathematics Lamar University Email: ted.mahavier@lamar.edu

Authors

- Submissions Editor: David M. Clark Department of Mathematics SUNY at New Paltz Email: clarkd@newpaltz.edu
- Technical Editor: Paul J. Kapitza Department of Mathematics Georgia Highlands College Email: pkapitza@highlands.edu

Editorial Board

- B. Dale Daniel, Lamar University
- Jacqueline Jensen-Vallin, Lamar University
- Judy Kennedy, Lamar University
- E. Lee May, Salisbury University
- Nathaniel Miller, University of Northern Colorado
- G. Edgar Parker, James Madison University (Emeritus)
- Carol Schumacher, Kenyon College

Journal Contents

Students

JIBLM

Unrefereed Notes

These refereed course notes fulfill the guidelines listed under Information for Authors.

This table is sortable. Click on a column heading to sort by that column. Click on a title to access these notes.

Title	Author	Subject	Pages	Issue
Point-Set Topology	Orloff Clark , Lisa	topology	28	No. 41 (Apr. 2016)
Topology Notes	Person, Laura J.	topology	57	No. 40 (Jan. 2016)
Calculus I: Notes and Problems	Stallmann, Cornelius	calculus	76	No. 39 (Sept. 2015)
Discovering Infinity	Olinick, Michael	set theory	71	No.

Third of three activities:

* Turn your desks into "V"s and do questions 1–3 of the worksheet I'm about to hand out.

* After you get started, I'll designate a "Chalk Czar".

 $(\approx 5 \text{ minutes})$

What you "know" is that the word *derivative* means *slope*, and we write it with a prime: f'(x).

(Time's up.)

Thank you again!!!

Implementing IBL

Developing questions Assigning groups Structuring the group work What you do while they're working Giving feedback How to develop questions? Two wide-spread approaches to IBL:

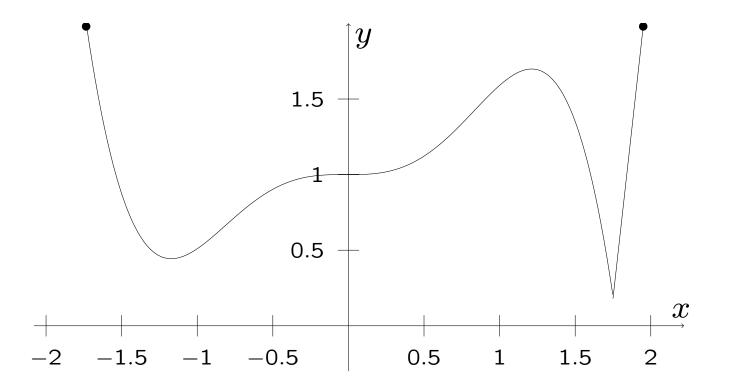
- (Modified) Moore Method
- POGIL

Proccess-Oriented, Guided Inquiry Learning

Example of a Moore-Methodesque approach, in Abstract Algebra **Definition.** For any element g in a group G with identity e, we say that |g|, the *order* of g, is the smallest positive integer n so that $g^n = e$. If such an integer does not exist, we say $|g| = \infty$.

For each of the statements 1-5 below, either prove the statement or find a counter-example.

1. If G contains an element of order 4, then all elements except the identity have order 4.


2. If G contains an element of order 4, then G contains an element of order 1.

3. If G contains an element of order 4, then G contains an element of order 2.

4. If G contains an element of order 4, then G contains an element of order 3.

5. If G contains an element of order 4, then that is the only element in G with order 4.

Example of a POGIL-esque approach, in Calculus I

The graph above has three local maxima and two local minima. Circle these five points.

Then fill in the blanks in the following sentence: If f is a function whose domain is the interval [a, b], then local minima and local maxima happen either

(a) at the _____* of the interval, or

(b) at places where the derivative is equal to ______,or

(c) at places where the derivative does not _____.

Values of x that satisfy (b) or (c) above are called *critical* points of f.

* *Hint:* Unscramble the letters "d e i n n o p s t".

How to assign groups?

- with charts
- writing symbols on worksheets
- using questionaires
- let the students decide

(3-4 people per group seems to work well)

Structure the discussion

- Which problems to work on?
- What roles do students have within groups? (Chalk Czar!)
- When and how do they stop working?

What the instructor does . . .

- nudge students to answer each other's questions
 "What does your group think?"
 "Sam wants to know if x = 2. Do you all agree?"
 "Does everyone in your group have the same answer?"
- assign "ambassadors" from one group to another
- encourage students to take risks
 "Put it up on the board! If it's a mistake,
 it's a good mistake and everyone will learn from it."

Feedback and discussion

- Look at the students, not at the board.
- Ask students who didn't put the answer up to explain it.
- Promote risk-taking and learning from "good" mistakes
- Promote "growth" mind-set and effort

Conclusion;

Something witty.

(talking trash? an IBL mind is a terrible thing to waste?)

Thank you.

References

Brown, Roediger, and McDaniel, Make it Stick: Bea Johnson, http://www.zerowastehome.com/ the science of successful learning, The Belknap Press of Harvard University Press: London, Eng-Journal of Inquiry Based Learning, land, 2014.

Chambliss and Takacs, How College Works, Harvard University Press: Cambridge MA, 2014.

Annalisa Crannell's classroom materials: http://www.fandm.edu/annalisa-crannell/

Epstein. "The Calculus Concept Jerome Inventory—Measurement of the Effect of Teaching Methodology in Mathematics", AMS Notices **60**:8 (2013) 1018–1026.

Grantham, Robinson, and Chapman, "That truly meant a lot to me': A gualitative examination of meaningful faculty-student interactions. College Teaching bf 63:3, 125–132.

http://www.jiblm.org/

Richard J. Light, Making the Most of College, Harvard University Press: Cambridge MA, 2001.

Ruder, S.M., & Hunnicutt, S.S. (2008). "POGIL in Chemistry Courses at a Large Urban University: A Case Study," In R.S. Moog, & J.N. Spencer (Eds.), Process-Oriented Guided Inquiry Learning: ACS Symposium Series 994 (pp. 133–147). Washington, D.C.: American Chemical Society (2008).