Making sense of how students make sense of science

Richard Steinberg
City College of New York
Results from cognitive science

• Principle 1: Knowledge is built from the processing of information received.

» yet our instructional model focuses on students receiving information rather than constructing it

Results from cognitive science

• Principle 2: Everything learned is learned via interpretation within a context.

» yet we assume students are able to understand and apply complex ideas in a multitude of situations
Results from cognitive science

• Principle 3: It is very difficult to change an established mental model substantially.

 » yet we expect students to abandon the beliefs they bring in favor of the beliefs we present
Results of traditional instruction

• Many students leave science with an unsatisfactory change in their:
 » reasoning ability
 » understanding of fundamental concepts
 » epistemological attitudes

• Students’ problem solving techniques are typically context dependent and not grounded in an understanding of the subject matter.
Science Education Research

Methods of science education research

• Classroom Observations

• Student Interviews
 » demonstration interview
 » problem solving interview

• Examination questions

• Free-response and multiple-choice diagnostics
Instructional philosophy

• Students take an active role in their own learning.

• The emphasis is on the process of science rather than the presentation of facts.

• Students conduct investigations and use their observations as a basis for constructing physical concepts and developing scientific models.

• Teaching is not by telling but by guiding students to help them develop a functional understanding of the material.
Instructional philosophy

traditional: vs. student-centered:
Force Concept Inventory

• 29-item conceptual multiple-choice diagnostic in mechanics

• Distractors are based on the results of extensive research in physics education

at what instants do the objects have the same speed

compare the forces of the car and truck on each other

Force Concept Inventory

FCI: Fraction of the possible gain

\[h = \frac{\text{post}\% - \text{pre}\%}{100 - \text{pre}\%} \]

Force Concept Inventory

FCI: Fraction of the possible gain

\[h = \frac{\text{post}\% - \text{pre}\%}{100 - \text{pre}\%} \]

- Tutorial \(h = 0.43 \)
- Traditional \(h = 0.23 \)

Force Concept Inventory

FCI: Fraction of the possible gain

\[h = \frac{\text{post}\% - \text{pre}\%}{100 - \text{pre}\%} \]

- **Tutorial**
 - (native English) \(h = 0.46 \)
 - (ESL) \(h = 0.42 \)

- **Traditional**
 - (native English) \(h = 0.26 \)
 - (ESL) \(h = 0.21 \)

Exam performance

Exam Performance

- kin midterm
- kin midterm (qualitative)
- atwood’s midterm
- kin final
- energy final
Student Evaluations

![Bar chart showing student evaluations for Traditional and Tutorial sections.](Image)

- **Tutorials**
- **Recitation sections**
- **Textbook**
- **Laboratories**

Legend:
- Blue: tutorials
- Purple: recitation sections
- Gray: textbook
- White: laboratories
Summer Scholars Program

- Selective academic program serving rising 10th – 12th graders throughout NYC
- Most students attend specialized high schools
- Flexible curriculum
- CCNY has offered observational astronomy to classes of about 25, nine hours per week for 6 weeks.
Which of the following do you think best approximates the relative motion of the earth and the sun?

A. The sun goes around the earth
B. The earth goes around the sun
C. Neither A nor B are correct
D. I do not know

As best as you can, provide a proper and complete scientific argument for your answer.
1. Which of the following do you think best approximates the relative motion of the earth and the sun?
 A. The sun goes around the earth
 B. The earth goes around the sun
 C. Neither A nor B are correct
 D. I do not know

2. As best as you can, provide a proper and complete scientific argument for your answer to question 1:
 The heliocentric motion theory is proven by observing the Sun’s nubbles and the planets’ motion. Also, it only makes sense this way because the Earth’s mass is not close enough to hold the Sun in gravitational pull. In addition, astronomical phenomena such as eclipses support this argument. During a solar eclipse, we can observe the moon covering the Sun. During a lunar eclipse, we can observe a shadow cast by the moon. In addition, we can observe other planets, such as Venus, Mercury, and Saturn, moving around the Sun (especially the 1st 3), which create shadows. If we compare them to Earth’s motion and conclude that Earth is so
Pretest responses

1. Which of the following do you think best approximates the relative motion of the earth and the sun?
 A. The sun goes around the earth
 B. The earth goes around the sun
 C. Neither A nor B are correct
 D. I do not know

 really?
 are we idiots now?

2. As best as you can, provide a proper and complete scientific argument for your answer to question 1.

 The heliocentric motion theory is proven by observing the sun’s wobbles and the planets’ motion. Also, it only makes sense this way because the Earth’s mass is not close enough to hold the sun in a gravitational pull. In addition, astronomical phenomena such as eclipses support this argument. During a solar eclipse, we can observe the moon passing in front of the sun. During a lunar eclipse, we observe a shadow cast by the moon. In addition, we can observe other planets, such as Venus, Mercury, and Saturn, moving around the sun (especially the 6734, which creates shadows), and we can compare them to Earth’s motion and conclude that Earth is also...
Pretest responses

1. Which of the following do you think best approximates the relative motion of the earth and the sun?
 A. The sun goes around the earth
 B. The earth goes around the sun
 C. Neither A nor B are correct
 D. I do not know

2. As best as you can, provide a proper and complete scientific argument for your answer to question 1.

 The heliocentric motion theory can be proven by observing the sun's wobbles and the planets' motion around the sun. The sense of this way because the Earth's mass is not enough to hold the sun in gravitational pull. Due to astronomical phenomenon such as eclipses support this argument. During a solar eclipse, we can observe the moon moving towards the sun. During a lunar eclipse, we can observe the Earth moving away from the moon. In addition, we can observe other planets, such as Venus, Mercury, and Saturn moving around the sun.
Pretest responses

Student “reasoning”

• “The earth goes around the sun because that’s how we have different seasons. That is also how we have day and night as well as the different positions of the shadow.”

• “The model of the universe is a heliocentric theory. This means that the sun is the center of the universe and all of the planets revolve around it.”

• “During the scientific revolution, a theory was proved that …”
Pretest responses

Student “reasoning”

- “The earth is moving around the sun as the sun is a focus. It takes 24 hours to finish one round.”

- “The sun is a planet of great size which is stationary at all times. If observed for the entire day the sun will move across the sky. Therefore one of the planets is moving. Since the sun remains in one place, earth must revolve around it.”

- “I think the answer is B because we’ve been taught that since we were young. … the true answer is I do not know because I have not witnessed it myself.”
Which of the following do you think best approximates the relative motion of the earth and the sun?

A. The sun goes around the earth
B. The earth goes around the sun
C. Neither A nor B are correct
D. I do not know

As best as you can, provide a proper and complete scientific argument for your answer.
Choice D

- "If I work with a model where the earth stays and the sun goes around the earth I can account for the motion of earth and sun. If I work with a model where the sun stays and the earth goes around the sun I can account for the motion of the earth and sun, too."

- "I can account for the daily motions of the sun in 2 ways. …"

- "… Therefore I do not know which model is better. While the earth centered model can be more complicated than the sun centered model, if both are finely adjusted, both models can approximately show the relative motions of the earth and the sun."
Exam responses

Choice B

• “We observed that the sun moves across the sky. This can be explained by having the sun go around the earth or the sun still and the earth spinning. … The movements of the planets can be more easily explained by using the sun centered model and gravity so the earth going around the sun model is most likely correct.”

• “I think B best approximates the relative motion of the earth and sun. Although both A and B account for the movement of the earth, sun, moon, and stars, B is much easier to explain the movement of the planets. Since it is observed that the distance between the earth and certain planets change over time, it would be difficult to incorporate this in a geocentric model.”

• “I say B because the earth goes around the sun & that is true because how we get different season changes in the year.”
Quantifying results

Pre/Post test rubric, explanations

1- Student's use of jargon, authority, circular reasoning, or irrelevant observations/experiments represents a significant part of their answer.

3- Student refers to relevant observation and experiments but part of explanation is erroneous or problematic.

5- Student cites observations/experiments distinguishing between 2 models and supports choice with proper explanation relevant to their answer.

Quantifying results

• $N = 139$ (matched) over 7 year period
 » Pretest: Average score = 1.50
 » Post-test: Average score = 3.92
Quantifying results (teachers)

- $N = 122$ (matched) over 3 year period
 - Pretest: Average score = 1.50
 - Post-test: Average score = 3.65

An inquiry into science education, where the rubber meets the road

Perspectives entering sabbatical as a full time high school science teacher

• Introductory college physics instructor
• Science education program director
• Teacher education program participant
• New York City High School Teacher

“An inquiry into science education, where the rubber meets the road,” R.N. Steinberg, Rotterdam, NL: Sense Publishing (2011).
Challenges of inquiry physics

• Classroom management
Challenges of inquiry physics

• Classroom management

• Student approaches / epistemologies
 » The average of 36 and 38 is 57
 » Q: Find T_f of 50g Zn block ($T_i = 71°C$) placed in 200g of water ($T_i = 10°C$).
 A: 3°C
 » Solution to $5x = 80$ is $x = 75$
Challenges of inquiry physics

• Classroom management

• Student approaches / epistemologies
 » “A car moves with a constant velocity of 9.5 m/s. What is the velocity of the car?”
Challenges of inquiry physics

• Classroom management

• Student approaches / epistemologies

 » “A car moves with a constant velocity of 9.5 m/s. What is the velocity of the car?” … “I could not do this one because I did not know which formula to use.”
Challenges of inquiry physics

• Classroom management

• Student approaches / epistemologies

• Emphasis on standardized short-answer exams
 » “Is that on the Regents?”
Challenges of inquiry physics

• Classroom management

• Student approaches / epistemologies

• Emphasis on standardized short-answer exams
 » Regents question:
 • The tau neutrino, the muon neutrino, and the electron neutrino are all:
 a. leptons b. baryons c. hadrons d. mesons
 • 82% answered correctly ($N = 38$)
Things that work / matter

• Mr. Diaz’s life science class
• Ms. O’ Brien’s history class
• Scotch tape experiment
• Phet Simulations
• Miguel: “Special aptitude in the field”
• Carlos and Linda: Period 9
• Joan and Pedro: Parent teacher night
Things that work / matter

Physics by Inquiry, Astronomy

• Summer Scholars Program rubric scores
 » N=139 (matched)
 » Pretest: Average score = 1.50
 » Post-test: Average score = 3.92

• Public high school results
 » N=35 students (19 took pretest, 9 took post-test)
 » Pretest: Average score = 1.05
 » Post-test: Average score = 3.44
Conclusion

Model of Learning

Research

Instruction

Curriculum Development